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Persistency properties of models of polymers on simple cubic 
and face-centred cubic lattices 

D E Burnette and H A Lim 
Supercomputer Computations Research Institute, Florida State University, Tallahassee, FL 
32306452.  USA 

Received 4 January 1989, in final form 11 April 1989 

Abstract. The first four odd moments of the persistence lengths of trails and silhouettes 
are studied on two different 3D lattices, the simple cubic lattice and the face-centred cubic 
lattice. Variations of the averaged persistence lengths with chain lengths ( I )  and inverse 
temperatures (e) are systematically examined. It is found that the averaged persistence 
lengths scale with a scaling law of the form (X:k+'(6')) 5 I p k v ( o ~ f ( I )  where v is the correlation 
exponent, p is a parameter, k = 0, 1,2,. . . and f ( I )  - constant, in contrast to the results in 
ZD where f ( I )  - log, 1. 

1. Introduction 

Recently, there has been some interest in the studies of persistencies of polymeric 
models [l-51. This concept is important in many disciplines, especially those in which 
walks on lattices are used to model the physical systems of interest. For instance, one 
talks about the persistence lengths in gel electrophoresis of DNA [6] or fragments of 
DNA in aqueous solutions form lyotropic polymer liquid crystal phases [7]. 

In the preceding paper [l], we study the first four odd moments of persistence 
lengths of trails and silhouettes on two-dimensional square and triangular lattices. In 
particular, the temperature dependence is introduced via the conjugate fugacity factor 
e", where I is the number of intersections, 8 = -I&l/kBT and I E ~  is the attractive 
energy of intersection. These models are interesting in the sense that they interpolate 
between the usual random walk model (RW) and the self-avoiding walk model (SAW) 
of polymers, and that they model polymers with fused loops [8-161. 

In this paper, we shall pursue a parallel study of the persistency properties of 
these polymeric models on a loose-packed three-dimensional (3D) simple cubic lattice 
and on a close-packed 3D face-centred cubic lattice. In $2 we shall recall some of the 
thermodynamical definitions, which we will use in the subsequent sections. Section 
3 gives the results of exact enumeration and $44-6 are devoted to analyses of the 
data of the simple cubic lattice and the faced-centred cubic lattice. Comparisons and 
conclusion are presented in $7. 

2. Symbols and thermodynamic functions 

We recall that if C(1, I ,  r )  denotes the total number of trails (silhouettes) of chain length 
I ,  number of intersections I and end-to-end distance r ,  then for a fixed chain length, 
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the total number of trails (silhouettes) and the partition function on a lattice are given, 
respectively, as [ 12-1 51 

The c( l , I )  tables have been published elsewhere [13-151 and will not be reproduced 
here. The averaged mth moment of the persistence lengths along the direction of the 
initial step (+x) is defined by [l, 151: 

where we have used f as the generic notation for the direction of the first step, and x 
is the projected displacement in the 9 direction. 

3. Exact enumeration 

In our enumeration process, the first step is always fixed along a certain direction to 
induce the 'initial perturbation' and to reduce the enumeration time by a factor of q, 
where 4 is the coordination number of the lattice [l, 151. We have enumerated the first 
four odd moments X2k+'( l ,  I) with k = 0,1,2,3 of trails and silhouettes, categorised 
according to the number of intersections I ,  and the chain lengths 1. A noteworthy point 
is that since there is in general no topological relation relating the number of trails 
to the number of their corresponding silhouettes, we have to classify the silhouette 
configurations by brute force. The computer time required for the classification renders 
enumerations to high orders impractical. All the enumerations (on the simple cubic 
lattice and on the face-centred cubic lattice) take about a total of 75 CPU hours on a 
VAX 8700. 

3.1. Simple cubic lattice 

The enumeration on this lattice is quite straightforward since the primitive axes are all 
mutually perpendicular. The basis vectors are the 9, $, and i axes. The enumeration 
is performed with the first monomeric site rooted at the origin and the first step fixed 
along 2. It is then easy to see that there are only two sets of topologically distinct 
configurations [13, 141: 

(i) the second step is along 2 ;  
(ii) the second step is either along 9 or along +i. 

We emphasise that overlap of bonds is forbidden. The projected displacement of a 
configuration is then just the x component of the end-to-end vector of the configuration. 
Table 1 presents the first three odd moments of the persistence lengths for trails of 
chain lengths up to I = 15 and a maximum number of intersections I = 5 on the simple 
cubic lattice. Table 2 gives the corresponding table for silhouettes. 
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Table 1. Trails on a simple cubic lattice: (a) the first odd moment of the persistence length 
X ( f , J ) ;  (b) the second odd moment of the persistence length X3(f,1); (c) the third odd 
moment of the persistence length X 5 ( L l ) .  
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r I = O  1 = 1  1 = 2  1 = 3  1 = 4  i=5 
~ 

(4  
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

xu, 1 )  
0.31000E2 
0.15600E3 
0.76500E3 
0.37 34084 
0.1801 SE5 
0.86800E5 
0.4155986 
0.19887E7 
0.94787E7 
0.45166E8 
0.21463E9 
0.10198E10 
0.48360E10 

0.00000EO 
0.12000E2 
0.1280083 
0.10680E4 
0.72480E4 
0.46068E5 
0.273 18E6 
0.15702E7 
0.87349E7 
0.47701E8 
0.25568E9 
0.13537E10 

0.12000E2 
0.20800E3 
0.2 1800E4 
0.18672E5 0.20800E3 
0.13879E6 0.45120E4 
0.94661E6 0.48224E5 0.44800E3 
0.60922E7 0.43521E6 0.91920E4 
0.37466E.8 0.33614E7 0.1287486 0.35200E3 
0.22345E9 0.24121E8 0.13536E7 0.12896E5 

(b)  
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

(4 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

- 

x3(1,1) 
0.10300E3 
0.74400E3 
0.48690E4 
0.29936E5 
0.17620E6 
0.10049E7 
0.55945E7 
0.30563E8 
0.16444E9 
0.87375E9 
0.45942E10 
0.23943Ell 
0.12383E12 

x5(1,1) 

0.51 100E3 
0.52560E4 
0.45405E5 
0.35074E6 
0.25069E7 
0.16922E8 
0.10934E9 
0.68242E9 
0.41418E10 
0.24565E11 
0.142WE 12 
0.81 766E12 
0.461 28E13 

0.00000EO 
0.12000E2 
0.24800E3 
0.32280E4 
0.31392E5 
0.2623 1 E6 
0.197 12E7 
0.13784E8 
0.91276E8 
0.57999E9 
0.35661 E 10 
0.21352Ell 

0.12000E2 
0.49600E3 
0.67400E4 
0.74184ES 
0.6873486 
0.57415E7 
0.44288E8 
0.32173E9 
0.22282ElO 

0.00000EO 
0.12000E2 
0.72800E3 
0.1 5228E5 
0.21053E6 
0.23066E7 
0.21 737E8 
0.18424E9 
0.14436ElO 
0.10646E11 
0.74828Ell 
0.50578E12 

0.12000E2 
0.16480E4 
0.35060E5 
0.5055 1 E6 
0.58561E7 
0.5906588 
0.53865E9 
0.45504E10 
0.36167Ell 

0.20800E3 
0.95520E4 
0.15094E6 
0.17536E7 
0.1701 1 E8 
0.14718E9 

0.20800E3 
0.297 12ES 
0.72406E6 
0.1 1443E8 
0.14098E9 
0.14884E 10 

0.44800E3 
0.23784E5 
0.42509E6 0.14080E4 
0.54462E7 0.36128E5 

0.44800E3 
0.82152E5 
0.22614E7 0.56320E4 
0.36580E8 0.21354E6 

3.2. Face-centred cubic lattice 

The enumeration on this lattice is a little more involved because the axes are not 
mutually orthogonal. However symmetry factors can be used in our favour. The basis 
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Table 2. Silhouettes on a simple cubic lattice: (a )  the first odd moment of the persistence 
length X ( I , l ) ;  ( b )  the second odd moment of the persistence length X 3 ( l , 1 ) ;  (c) the third 
odd moment of the persistence length X 5 ( l , l ) .  

I I = O  I = 1  1 = 2  1 = 3  1=4 i=5 

(0) 

3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 

X ( I ,  1 )  

0.31000E2 
0.15600E3 
0.76500E3 
0.37340E4 
0.18015E5 
0.86800E5 
0.41559E6 
0.19887E7 
0.94787El 
0.45166E8 
0.2 1463E9 
0.10 198E 10 
0.48360ElO 

0.00000EO 
0.60000EI 
0.64000E2 
0.53400E3 
0.36240E4 
0.23034E5 
0.13659E6 
0.7851186 
0.43674E7 
0.23850E8 
0.12784E9 
0.67687E9 

0.20000E1 
0.34667E2 
0.38533E3 
0.34200E4 0.13000E2 
0.26309E5 0.29550E3 
0.18361 E6 0.32040E4 0.10182E2 
0.1207387 0.30024E5 0.20701E3 
0.7542487 0.23879E6 0.29680E4 0.26667El 
0.45650E8 0.17684E7 0.32705E5 0.10133E3 

(b)  
3 
4 
5 
6 
1 
8 
9 
10 
11 
12 
13 
14 
15 

x3(1,1) 
0.10300E3 
0.74400E3 
0.48690E4 
0.29936E5 
0.17620E6 
0.10049E7 
0.55945E7 
0.30563E8 
0.16444E9 
0.87375E9 
0.45942E 10 
0.23943E11 
0.12383812 

(Cl 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

x50,1) 
0.51 100E3 
0.52560E4 
0.45405E5 
0.35074E6 
0.25069E7 
0.16922E8 
0.10934E9 
0.68242E9 
0.41418E10 
0.24565Ell 
0.14290E12 
0.8 1766E 12 
0.46128E13 

0.00000EO 
0.60000E1 
0.12WE3 
0.16 140E4 
0.15696E5 
0.13115E6 
0.98561E6 
0.6891 8E7 
0.45638E8 
0.29000E9 
0.17830ElO 
0.10676E11 

0.00000EO 
0.60000E 1 
0.36400E3 
0.76140E4 
0.10526E6 
0.1 1533E7 
0.10868E8 
0.92120E8 
0.72180E9 
0.53231E10 
0.37414E11 
0.25289E 12 

0.20000E1 
0.82667E2 
0.11453E4 
0.12968E5 0.13OOOE2 
0.12384E6 0.61050E3 
0.10627E7 0.98790E4 
0.83989E7 0.1 1734E6 
0.62300E8 0.11670E7 
0.43943E9 0.10354E8 

0.10182E2 
0.53864E3 
0.96676E4 0.10667E2 
0.12700E6 0.27733E3 

0.20000E1 
0.27467E3 
0.58653E4 
0.86040E5 0.13WE2 
0.10196E7 0.18705E4 
0.10539E8 0.46719E5 
0.98443E8 0.75359E6 
0.85047E9 0.94785E7 
0.68989E10 0.10223E9 

0.10182E2 
0.18652E4 
0.51259E5 0.42667E2 
0.83913E6 0.16213E4 

vectors are chosen for convenience, as [ 151 : 

1 1 
(12 = --cv*+i) Jz 6, = -((z*+f) Jz 6,  = -((.E+$) Jz (3) 

where the 1/& is a normalisation factor so that each bond is of length unity. The 
enumeration is performed with the first monomeric site rooted at the origin and the first 
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step fixed along d , .  It is then easy to see that there are only four sets of topologically 
distinct configurations [15] : 

(i) the second step is along d ,  ; 
(ii) the second step is along +-d, A 2; 
(iii) the second step is either along d3,  d2,  -d3 A 9  or -d2 A 2; and 
(iv) the second step is either along d ,  Ay*, a*, A f, 4, or along -d2, 

where the A denotes a vector cross product. Care should be exercised to make sure that 
contributions (both positively and negatively) from different projected components are 
accounted for. Tables 3 and 4 present the first three odd moments of the persistence 
lengths for trails and silhouettes, respectively. The tabulations here are up to a chain 
length of 1 = 10 and a maximum number of intersections of I = 5. Hence we see that 
the enumerations on the simple cubic lattice and the face-centred cubic lattice are up 
to the same term in the expansion of equation (2) as a series in ere. 

Table 3. Trails on a face-centred cubic lattice: ( a )  the first odd moment of the persistence 
length X ( 1 , I ) ;  (b)  the second odd moment of the persistence length X 3 ( l , l ) ;  (c) the third 
odd moment of the persistence length X 5 ( l , l ) .  

1 I = O  I = 1  1 = 2  1 = 3  1 = 4  1=5 

(a )  
2 
3 
4 
5 
6 
7 
8 
9 

10 

X ( 1 , I )  
0.12000E2 
0.13300E3 
0.14260E4 
0.15023E5 
0.15662E6 
0. I62 18E7 
0.16714E8 
0.17 165E9 
0.17580E 10 

0.00000EO 
0.34000E2 
0.94200E3 0.24000E2 
0.17072E5 0.88400E3 
0.25806E6 0.21862E5 0.21200E3 
0.35335E7 0.42659E6 0.15712E5 0.1 1200E3 
0.45501E8 0.71 505E7 0.49856E6 0.1 1224E5 
0.56207E9 0.10848E9 0.1 1296E8 0.5047386 0.37520E4 

(b)  
2 
3 
4 
5 
6 
7 
8 
9 

10 

x3(1, 1 )  
0.24000E2 
0.42100E3 
0.63445E4 
0.87546E5 
0.11406E7 
0.14275E8 
0.17344E9 
0.20597ElO 
0.24024Ell 

0.00000EO 
0.35500E2 
0.17700E4 
0.48968E5 
0.10287E7 
0.1841 3E8 
0.29684E9 
0.44468E10 

0.1 5 W E 2  
0.14600E4 
0.53257E5 0.14900E3 
0.13762E7 0.22090E5 0.64000E2 
0.29324E8 0.10815E7 0.14188E5 
0.55059E9 0.33395E8 0.95555E6 0.42440E4 

(4 
2 
3 
4 
5 
6 
7 
8 
9 

10 

x5(1,1) 
0.64500E2 
0.18730E4 
0.40229E5 
0.73 122E6 
0.1 1942E8 
0.18 102E9 
0.25970ElO 
0.35719Ell 
0.47511E12 

0.00000EO 
0.3587582 
0.45120E4 
0.20420E6 
0.60830E7 
0.143 16E9 
0.28928E10 
0.52530E11 

0.12750E2 
0.34940E4 
0.20040E6 0.13325E3 
0.70777E7 0.48494E5 0.52000E2 
0.19341E9 0.36662E7 0.27589E5 
0.44842ElO 0.15647E9 0.29305E7 0.70070E4 
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Table 4. Silhouettes on a face-centred cubic lattice: (a) the first odd moment of the 
persistence length X ( 1 , I ) ;  (b) the second odd moment of the persistence length X 3 ( I , l ) ;  ( c )  
the third odd moment of the persistence length X 5 ( l , 1 ) .  

I I = O  I = 1  1 = 2  1 = 3  1 = 4  i=5 
~ 

(4 
2 
3 
4 
5 
6 
7 
8 
9 

10 

~ 

xu, I )  
0.12000E2 
0.13300E3 
0.14260E4 
0.1 5023E5 
0.15662E6 
0.1621 8E7 
0.16714E8 
0.1716SE9 
0.17580E10 

0.00000EO 
0.17000E2 
0.47100E3 0.40000El 
0.85360E4 0.14733E3 
0.12903E6 0.37613E4 0.13250E2 
0.17667E7 0.76343E5 0.97692E3 0.25455El 
0.22751E8 0.13251E7 0.31 148E5 0.23602E3 
0.2810389 0.20692E8 0.72341E6 0.10382E5 0.24764E2 

(b) 
2 
3 
4 
5 
6 
7 
8 
9 

10 

x 3 ~  1) 
0.24000E2 
0.42100E3 
0.63445E4 
0.87546E5 
0.11406E7 
0.14275E8 
0.17341E9 
0.20597E10 
O.24024Ell 

0.00000EO 
0.17750E2 
0.88500E3 0.25000E1 
0.24484E5 0.24333E3 
0.51437E6 0.90098E4 0.93125El 
0.92064E7 0.23903E6 0.1376684 0.14545E1 
0.14842E9 0.52466E7 0.67306E5 0.31075E3 
0.22234E10 0.10136E9 0.21 142E7 0.20073E5 0.29881E2 

(C) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

x5(1,1) 
0.6450082 
0.18730E4 
0.40229E5 
0.73 122E6 
0.1 1942E8 
0.18 102E9 
0.25970E 10 
0.35719Ell 
0.4751 1 E12 

0.00000EO 
0.17937E2 
0.2256084 0.21250El 
0.10210E6 0.58233E3 
0.3041 SE7 0.33537E5 0.83281El 
0.71581 E8 0.12035E7 0.30272E4 0.1 1818E1 
0.14464810 0.33661E8 0.2281286 0.61715E3 
0.26265Ell 0.80090E9 0.98475E7 0.6279185 0.51 16182 

3.3. Some inferences 

From tables 1-4 and the c(l,Z) tables of [13-151, it is easy to see that for both the 
simple cubic lattice and the face-centred cubic lattice, the reduced moment 

where the equality sign holds only for 1 = 1. This behaviour has also been observed in 
2D [l, 4, 151. The inequality is a direct consequence of the faster rate of increase of the 
higher moments. It can also be easily verified that fi:kf'(0) increases as 8 increases 
[15]. Such behaviour has also been noted in 2D [l, 171. 

4. Analysis of the data 

As in [l], we shall try to fit the averaged odd moments of the persistence lengths with 
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a scaling law of the form 

where the arguments 8 show explicitly any possible temperature dependence, p is a 
parameter, f ( l )  is some function of 1 and the Ak(8 )  are the amplitudes (or prefactors). 
As can easily be shown (at least heuristically) [4, 51, f ( I )  constant in 3D. In order 
to investigate this numerically, we shall analyse the persistence lengths of trails and 
silhouettes by taking the Naperian logarithms of equation ( 5 )  : 

In addition, we will also study the differences in averaged moments of persistence 
lengths of silhouettes and trails [ l ]  

To summarise, we shall analyse on each lattice (as in [ l ] )  the persistence lengths in 
three steps: 

( 1 )  the variation of persistence lengths with chain length; 
(2) the temperature dependence of the persistence lengths, and 
(3) the variation of A:k+’ (8) with temperature. 

5. Analysis for trails and silhouettes on a simple cubic lattice 

5 .1 .  Variation with chain length 

Figures l ( a ) - l ( d )  are plots of loglo(X,?+’) against log,, I at two different temperatures 
of 9 = 0.0 and 8 = 4.0. It is very obvious that in the hot region (for example B = O.O), 
the plots are linear so that we can perform a linear regression on the data in this 
region. 

Table 5 ( a )  tabulates the gradients (see equation (6)) of the log-log plots for 
-5 I 8 I 5 and table 5 ( b )  gives the intercepts of the plots in the same temperature 
range. The regression coefficients are averages of the coefficients obtained from 
Imin I I 5 I,,, where lmin = 7, ..., 1 1  and Imax is held fixed at 15. It is interesting to 
note that for the k = 0 case, the gradient pkv  - lop2 and the intercept is a constant 
(- O.l),  an observation that can be corroborated with the fact that f ( I )  - constant. 

5.2.  Variation with temperature 

Figures 2(a )  and 2(b) are representative plots of the variation of the averaged persis- 
tence lengths with temperature, (X’) against 8 for 10 I I 5 15. It is seen from the 
plots that the averaged persistence lengths remain at a constant value for low values of 
8 (swollen region), and then decrease very rapidly within a relatively narrow range of 
0 to another constant value. As in 2D [l], it is also observed that this collapse occurs 
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io5 

lo4 

io3 

102 

10 

1 

104 

io3 

102 

A * A A A  
10 1 A A 

lo' 

CI c 
% " 

h 
r- 

5 

2 4 6 8 10 15 
e 

[0qo  ' 
Figure 1. Log-log plots of (X), (X3), (X5) and (X') 
against I at a constant 0 = 0.0 in ( a )  trails and ( b )  
silhouettes on a simple cubic lattice; at a constant 
6 = 4.0 in (c) trails and ( d )  silhouettes on a simple 
cubic lattice. 

Figure 2. Plots of (X') against 6 for 1 = 10-15 in (a) 
trails and (b)  silhouettes on a simple cubic lattice; 
(c) a plot of A: for I = 10-15. 

at a higher value of 0 for silhouettes than that for trails. We note in particular that at 
e = --CO (SAW) 

1.293 if k = 1 
2.555 if k =  2 
3.815 if k = 3 



Persistency properties of models of polymers 

Table 5. The values of (a) the linear regression coefficients of the Naperian logarithm and 
( b )  the prefactors for the first four odd moments of the persistence lengths for trails and 
silhouettes on a simple cubic lattice. 

3089 

Trails Silhouettes 

0 k = O  k = l  k = 2  k = 3  k = O  k - l  k = 2  k = 3  

(a) pkv  
-ZC 0.034 1.293 2.555 3.815 
-5.0 0.034 1.293 2.555 3.815 
-4.0 0.034 1.292 2.554 3.812 
-3.0 0.033 1.289 2.548 3.805 
-2.0 0.032 1.280 2.532 3.785 
-1.0 0.026 1.253 2.489 3.729 

0.0 0.010 1.175 2.364 3.569 
1.0 -0.035 0.941 1.993 3.101 
2.0 -0.093 0.414 1.095 1.931 
3.0 -0.012 0.093 0.168 0.410 
4.0 0.140 0.432 0.321 0.008 
5.0 0.231 0.939 1.154 0.807 

0.034 
0.035 
0.034 
0.035 
0.033 
0.030 
0.024 
0.003 

-0.044 
-0.076 

0.032 
0.203 

1.293 
1.294 
1.293 
1.291 
1.287 
1.274 
1.240 
1.143 
0.891 
0.443 
0.236 
0.553 

2.555 
2.556 
2.555 
2.552 
2.545 
2.524 
2.466 
2.309 
1.899 
1.093 
0.389 
0.546 

3.815 
3.816 
3.815 
3.81 1 
3.801 
3.774 
3.700 
3.497 
2.969 
1.877 
0.654 
0.347 

(b )  b i o  Ak 
--CC 0.096 
-5.0 0.096 
-4.0 0.097 
-3.0 0.097 
-2.0 0.095 
-1.0 0.095 

0.0 0.092 
1.0 0.093 
2.0 0.064 
3.0 -0.126 
4.0 -0.362 
5.0 -0.498 

0.024 
0.024 
0.025 
0.026 
0.030 
0.042 
0.082 
0.220 
0.539 
0.542 

-0.094 
-0.807 

0.111 
0.111 
0.112 
0.115 
0.124 
0.150 
0.228 
0.478 
1.104 
1.577 
0.926 

-0.300 

0.308 
0.308 
0.310 
0.314 
0.327 
0.364 
0.473 
0.808 
1.673 
2.656 
2.408 
1.037 

0.096 
0.096 
0.097 
0.095 
0.096 
0.095 
0.093 
0.09 1 
0.085 
0.022 

-0.192 
-0.442 

0.024 
0.024 
0.024 
0.025 
0.027 
0.032 
0.048 
0.096 
0.23 1 
0.452 
0.353 

-0.243 

0.1 11 
0.110 
0.111 
0.112 
0.117 
0.129 
0.163 
0.259 
0.522 
1.027 
1.283 
0.659 

0.308 
0.307 
0.308 
0.31 1 
0.317 
0.335 
0.383 
0.519 
0.883 
1.634 
2.316 
2.006 

which, after substituting v(SAW) = 3/5, yield 

2.155 if k = 1 
2.129 if k = 2 
2.119 if k = 3. 

(9) 

These results are in very good agreement with p = 2.0 obtained from scaling analysis 
PI. 

5.3. Variation of with temperature 

Figure 2(c) displays A:&+' against 8 for 10 I 1 I 15. As 8 increases from -a to +CO, 

increases from zero, attains a maximum and then decreases back to zero. The two 
tails are explained by the fact that in the swollen phase (hot region) and in the collapse 
phase (cold region), trails and silhouettes share a common exponent of v = 3/5 and 
v = l /d  respectively (where we recall d is the dimensionality). The non-vanishing value 
of Afk+' is a direct consequence of the fact that collapse occurs at a higher value of 0 
in silhouettes than in trails. 
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6. Analysis for trails and silhouettes on a face-centred cubic lattice 

6.1. Variation with chain length 

Figures 3(a) and 3(b) are plots of log,,(X:k+') against log,, 1 for trails and silhouettes, 
respectively. The regression coefficients, obtained from Imin I 1 I l,,, where Imin = 
4, ..., 8 and I,,, = 10, are tabulated in tables 6 ( a )  and 6 ( b ) .  Again we note here that 
for the k = 0 case, the gradient p k v  - IOp2 and the intercept is a constant (- 0.04). 
This should be contrasted with the results in 2D where pkv = lo-' for the k = 0 case. 
For larger values of (figures 3(c) and 3(d)), the log-log plots are more erratic. 

6.2. Variation with temperature 

The variation of (X') with 0 is depicted in figures 4 ( a )  and 4(b ) .  The qualitative 
behaviour is very similar to that observed on the simple cubic lattice, and the same 
explanation is still valid for explaining the qualitative features. From table 6(a ) ,  at 
e = --CO (SAW) 

1.275 if k = 1 
2.519 if k = 2  
3.785 if k = 3 

which, after making the substitution v(SAW) = 3/5, give 

2.125 if k = 1 
2.099 if k = 2 
2.103 if k = 3. 

These results are again in excellent agreement with the scaling analysis results of p = 2.0 
[51. 

6.3. Variation of A:k+' with temperature 

The variation of with 0 is shown in figure 4(c )  for 5 I I I 10. The qualitative 
behaviour is very similar to that seen on the simple cubic lattice and may be explained 
similarly. 

7. Discussions and conclusion 

We have systematically studied the first four odd moments of the persistence lengths of 
trails and silhouettes on a simple cubic lattice and on a face-centred cubic lattice. The 
results are tabulated according to their chain lengths and the number of intersections 
for the first time. This tabulation allows the temperature dependence to be introduced 
via the conjugate fugacity factor ele, and this renders examinable the properties of 
persistence lengths in various temperature regions. The results seem to augment the 
belief that persistence lengths (in 3D) scale according to the scaling law [4, 5, 151 
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Figure 3. Log-log plots of (X), (X3), (X5) and (X') 
against I at a constant 0 = 0.0 in ( a )  trails and (b) 
silhouettes on a face-centred,cubic lattice; and at a 
constant B = 4.0 in (c) trails and (d) silhouettes on 
a face-centred cubic lattice. 
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Figure 4. Plots of (X') against B for 1 = 5-10 in 
( a )  trails and (b) silhouettes on a face-centred cubic 
lattice; (c) a plot of AY for 1 = 5-10. 

where p = 2.0. We have also tried to fit the enumeration data with the reduced moment 
Dl 

so that any possible f ( I )  dependence may be eliminated. The linear regression coef- 
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Table 6. The values of (a )  the linear regression coefficients of the Naperian logarithm and 
( b )  the prefactors for the first four odd moments of the persistence lengths for trails and 
silhouettes on a face-centred cubic lattice. 

Trails Silhouettes 
~ 

0 k = O  k = l  k = 2  k = 3  

(4 PkV 
-J- 0.045 
-5.0 0.043 
-4.0 0.043 
-3.0 0.042 
-2.0 0.039 
-1.0 0.031 

0.0 0.008 
1.0 -0.048 
2.0 -0.097 
3.0 -0.040 - 
4.0 0.049 
5.0 0.061 

1.275 
1.274 
1.272 
1.266 
1.252 
1.211 
1.097 
0.793 
0.253 

0.117 
0.435 

-0.050 

2.519 
2.517 
2.514 
2.506 
2.484 
2.421 
2.245 
1.767 
0.810 

-0.039 
-0.097 

0.362 

3.785 
3.783 
3.779 
3.769 
3.741 
3.663 
3.445 
2.846 
1.569 
0.145 

-0.380 
-0.063 

k = O  k = l  k = 2  k = 3  

0.045 
0.043 
0.044 
0.043 
0.040 
0.037 
0.027 

-0.Oo0 
-0.048 
-0.059 

0.029 
0.132 

1.275 2.519 
1.274 2.518 
1.273 2.517 
1.271 2.513 
1.263 2.502 
1.244 2.471 
1.192 2.390 
1.057 2.179 
0.762 1.692 
0.356 0.912 
0.175 0.302 
0.355 0.290 

3.785 
3.784 
3.782 
3.777 
3.763 
3.726 
3.624 
3.358 
2.730 
1.628 
0.539 
0.135 

(b)  h i o 4  

-x 0.042 
-5.0 0.044 
-4.0 0.043 
-3.0 0.043 
-2.0 0.042 
-1.0 0.040 

0.0 0.037 
1.0 0.034 
2.0 -0.010 
3.0 -0.150 
4.0 -0.287 
5.0 -0.326 

-0.052 - 
-0.052 
-0.05 1 
-0.049 
-0.043 
-0.027 

0.024 
0.169 
0.403 
0.363 

-0.046 
-0.514 

-0.OOO 0.132 
0.000 0.133 
0.001 0.135 
0.005 0.141 
0.016 0.156 
0.048 0.198 
0.140 0.320 
0.401 0.668 
0.910 1.406 
1.177 2.057 
0.767 1.877 
O.Oo0 1.063 

0.042 
0.044 
0.042 
0.043 
0.044 
0.042 
0.038 
0.033 
0.015 

-0.064 
-0.224 
-0.367 

-0.052 
-0.052 
-0.052 
-0.051 
-0.048 
-0.040 
-0.020 

0.035 
0.154 
0.267 
0.141 

-0.261 

-0.Oo0 
-0.OOO 

O.Oo0 
0.002 
0.008 
0.022 
0.062 
0.168 
0.410 
0.752 
0.835 
0.415 

0.132 
0.133 
0.134 
0.136 
0.144 
0.164 
0.2 18 
0.363 
0.706 
1.269 
1.648 
1.401 

ficients obtained from this fit differ from the numbers in tables 5(a)  and 6(a) only in 
the second decimal place. This may be taken as a sign that equation (12) provides a 
reasonable fit. 

Quick comparisons of figures 1 and 3, especially those in the cold temperature 
regions, show that the averaged odd moments ( X : k + l ( e ) )  are correlated. This is 
obvious from the defining equation (2). 

Since the face-centred cubic lattice has a coordination number q = 12 and the 
simple cubic lattice has a. coordination number q = 6, the persistence lengths in the 
former are expected to be lower than in the latter. This fact is clearly borne out in 
tables 5(b)  and 6(b).  It is seen that the weaker persistency on the face-centred cubic 
lattice is absorbed into the prefactors (see equation ( 5 ) ) ,  thus explaining the lower 
values of the prefactors on the face-centred cubic lattice as compared with those on 
the simple cubic lattice. 

On each lattice, it is seen that as 8 is increased, collapse occurs at a lower value 
of 8 in trails (see figures 2(a) and 2(b ) ,  4(a) and 4(b)). This behaviour is also very 
well reflected in figures 1 and 3. Closer comparison of the figures reveals that as 6 is 
increased, the persistence lengths of silhouettes decrease, but always stay larger than or 
equal to those of trails. Since 8 is the inverse temperature, this implies that silhouettes 
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collapse at a colder temperature. A plausible explanation for this behaviour is that 
for each silhouette, there is a multiplicity of trails and thus it is energetically more 
favourable for silhouettes to collapse at a colder temperature. This fact has also been 
observed in 2D [l]. 

Another noteworthy observation is that persistency is relatively weaker in 3D than 
in 2D [5]. This is not surprising at all since in 3D the walks have an extra physical 
dimension. In general, one would expect the persistency to be lower the higher the 
dimension, an inference in agreement with the data of [5], though not explicitly pointed 
out in the reference. 

To summarise, we note that most of the properties of the persistence lengths 
observed in 2D [l]  are also observed in 3D, except that f(1)  - log, 1 in 2D and 
f(1) - constant in 3D. The log, 1 dependence is unique of 2D. This conclusion is very 
reminiscent of the results of SAW [4, 51, which correspond to our 0 + --a3 limit. Since 
SAW are actually trails (or silhouettes) with no intersections, their persistency provides 
a numerical upper bound on the persistency of trails (or silhouettes). 
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