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Abstract. The first four odd moments of the persistence lengths of trails and silhouettes
are studied on two different 3D lattices, the simple cubic lattice and the face-centred cubic
lattice. Variations of the averaged persistence lengths with chain lengths (/) and inverse
temperatures (6) are systematically examined. It is found that the averaged persistence
lengths scale with a scaling law of the form (X#*1(6)) ~ 1P*'®) £ (1) where v is the correlation
exponent, p is a parameter, k = 0,1,2,... and f () ~ constant, in contrast to the results in
2D where f({) ~ log, I

1. Introduction

Recently, there has been some interest in the studies of persistencies of polymeric
models [1-5]. This concept is important in many disciplines, especially those in which
walks on lattices are used to model the physical systems of interest. For instance, one
talks about the persistence lengths in gel electrophoresis of DNA [6] or fragments of
DNA in aqueous solutions form lyotropic polymer liquid crystal phases [7].

In the preceding paper [1], we study the first four odd moments of persistence
lengths of trails and silhouettes on two-dimensional square and triangular lattices. In
particular, the temperature dependence is introduced via the conjugate fugacity factor
e/, where I is the number of intersections, 8 = —|g| /kgT and [¢| is the attractive
energy of intersection. These models are interesting in the sense that they interpolate
between the usual random walk model (RW) and the self-avoiding walk model (SAW)
of polymers, and that they model polymers with fused loops [8-16).

In this paper, we shall pursue a parallel study of the persistency properties of
these polymeric models on a loose-packed three-dimensional (3D) simple cubic lattice
and on a close-packed 3D face-centred cubic lattice. In §2 we shall recall some of the
thermodynamical definitions, which we will use in the subsequent sections. Section
3 gives the results of exact enumeration and §§4-6 are devoted to analyses of the
data of the simple cubic lattice and the faced-centred cubic lattice. Comparisons and
conclusion are presented in §7.

2. Symbols and thermodynamic functions

We recall that if C(l,1,r) denotes the total number of trails (silhouettes) of chain length
[, number of intersections I and end-to-end distance r, then for a fixed chain length,
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the total number of trails (silhouettes) and the partition function on a lattice are given,
respectively, as [12-15]

e, 1) = Z c(,1,r) (1a)
Z,6) =) c(i,De". (1b)
>0

The c¢(l,I) tables have been published elsewhere [13-15] and will not be reproduced
here. The averaged mth moment of the persistence lengths along the direction of the
initial step (+x) is defined by [1, 15}:

) = AP x"(, 1,1 C(,1,r)e!?

(X7"(0) Z.0) )

where we have used £ as the generic notation for the direction of the first step, and x
is the projected displacement in the £ direction.

3. Exact enumeration

In our enumeration process, the first step is always fixed along a certain direction to
induce the ‘initial perturbation’ and to reduce the enumeration time by a factor of g,
where g is the coordination number of the lattice [1, 15]. We have enumerated the first
four odd moments X%**!(I,I) with k = 0,1,2,3 of trails and silhouettes, categorised
according to the number of intersections I, and the chain lengths /. A noteworthy point
is that since there is in general no topological relation relating the number of trails
to the number of their corresponding silhouettes, we have to classify the silhouette
configurations by brute force. The computer time required for the classification renders
enumerations to high orders impractical. All the enumerations (on the simple cubic
lattice and on the face-centred cubic lattice) take about a total of 75 CPU hours on a
VAX 8700.

3.1. Simple cubic lattice

The enumeration on this lattice is quite straightforward since the primitive axes are all
mutually perpendicular. The basis vectors are the £, § and 2 axes. The enumeration
is performed with the first monomeric site rooted at the origin and the first step fixed
along £. It is then easy to see that there are only two sets of topologically distinct
configurations [13, 14]:

(i) the second step is along £;
(i1) the second step is either along +y or along +2.

We emphasise that overlap of bonds is forbidden. The projected displacement of a
configuration is then just the x component of the end-to-end vector of the configuration.
Table 1 presents the first three odd moments of the persistence lengths for trails of
chain lengths up to / = 15 and a maximum number of intersections I = 5 on the simple
cubic lattice. Table 2 gives the corresponding table for silhouettes.
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Table 1. Trails on a simple cubic lattice: (a) the first odd moment of the persistence length
X(1,D); (b) the second odd moment of the persistence length X 3L, D); (c) the third odd
moment of the persistence length X S0

! =0 =1 =2 I=3 I=4 I=5
(a) XL

3 0.31000E2

4 0.15600E3 0.00000E0

5 0.76500E3 0.12000E2

6  0.37340E4 0.12800E3

7 0.18015ES 0.10680E4 0.12000E2

8  0.86800ES 0.72480E4 0.20800E3

9 041559E6 0.46068ES 0.21800E4
10 0.19887E7 0.27318E6 0.18672E5 0.20800E3

11 0.94787E7 0.15702E7 0.13879E6 0.45120E4

12 0.45166E8 0.87349E7 0.94661E6 0.48224ES 0.44800E3

13 0.21463E9 0.47701E8 0.60922E7 0.43521E6 0.91920E4

14 0.10198E10 0.25568E9 0.37466E8 0.33614E7 0.12874E6 0.35200E3
15 0.48360E10 0.13537E10 0.22345E9 0.24121E8 0.13536E7 0.12896ES

® XD

3 0.10300E3

4 0.74400E3 0.00000E0

5 0.48690E4 0.12000E2

6 0.29936E5 0.24800E3

7 0.17620E6 0.32280E4 0.12000E2

8 0.10049E7 0.31392E5 0.49600E3

9 0.55945E7 0.26231E6 0.67400E4
10 0.30563E8 0.19712E7 0.74184E5 0.20800E3
11 0.16444E9 0.13784E8 0.68734E6 0.95520E4
12 0.87375E9 0.91276E8 0.57415E7 0.15094E6 0.44800E3
13 0.45942E10 0.57999E9 0.44288E8 0.17536E7 0.23784E5
14 0.23943E11 0.35661E10 0.32173E9 0.17011E8 0.42509E6 0.14080E4

15 0.12383E12 0.21352E11 0.22282E10 0.14718E9 0.54462E7 0.36128ES

© X301

3 0.51100E3
4 0.52560E4 0.00000E0
5 0.45405E5 0.12000E2
6 0.35074E6 0.72800E3
7 0.25069E7 0.15228ES5 0.12000E2
8 0.16922E8 0.21053E6 0.16480E4
9 0.10934E9 0.23066E7 0.35060ES
10 0.68242E9 0.21737E8 0.50551E6 0.20800E3
11 0.41418E10 0.18424E9 0.58561E7 0.29712ES
12 0.24565E11 0.14436E10 0.59065E8 0.72406E6 0.44800E3
13 0.14290E12 0.10646E11 0.53865E9 0.11443E8 0.82152ES
14 0.81766E12 0.74828E11 0.45504E10 0.14098E9 0.22614E7 0.56320E4
15 0.46128E13 0.50578E12 0.36167E11 0.14884E10 0.36580E8 0.21354E6

3.2. Face-centred cubic lattice

The enumeration on this lattice is a little more involved because the axes are not
mutually orthogonal. However symmetry factors can be used in our favour. The basis
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Table 2. Silhouettes on a simple cubic lattice: (a) the first odd moment of the persistence
length X (I,I); (b) the second odd moment of the persistence length X3(,1); (c) the third
odd moment of the persistence length X 5,0,

l I=0 1=1 1=2 I=3 I=4 I=5
(a) X

3 0.31000E2

4 0.15600E3 0.00000EQ

5 0.76500E3 0.60000E1

6 0.37340E4 0.64000E2

7 0.18015E5 0.53400E3 0.20000E1

8 0.86800E5 0.36240E4 0.34667E2

9 0.41559E6 0.23034ES 0.38533E3

10 0.19887E7 0.13659E6 0.34200E4 0.13000E2

11 0.94787E7 0.78511E6 0.26309ES5 0.29550E3

12 0.45166E8 0.43674E7 0.18361E6 0.32040E4 0.10182E2

13 0.21463E9 0.23850E8 0.12073E7 0.30024E5 0.20701E3

14 0.10198E10 0.12784E9 0.75424E7 0.23879E6 0.29680E4 0.26667E1
15 0.48360E10 0.67687E9 0.45650E8 0.17684E7 0.32705ES 0.10133E3
(b) X310

3 0.10300E3

4 0.74400E3 0.00000EC

5 0.48690E4 0.60000E1

6 0.29936ES5 0.12400E3

7 0.17620E6 0.16140E4 0.20000E1

8 0.10049E7 0.15696ES 0.82667E2

9 0.55945E7 0.13115E6 0.11453E4

10 0.30563E8 0.98561E6 0.12968ES 0.13000E2

11 0.16444E9 0.68918E7 0.12384E6 0.61050E3

12 0.87375E9 0.45638E8 0.10627E7 0.98790E4 0.10182E2

13 0.45942E10 0.29000E9 0.83989E7 0.11734E6 0.53864E3

14 0.23943E11 0.17830E10 0.62300E8 0.11670E7 0.96676E4 0.10667E2
15 0.12383E12 0.10676E11 0.43943E9 0.10354E8 0.12700E6 0.27733E3
(] X301

3 0.51100E3

4 0.52560E4 0.00000EQ

5 0.45405ES 0.60000E1

6 0.35074E6 0.36400E3

7 0.25069E7 0.76140E4 0.20000E1

8 0.16922E8 0.10526E6 0.27467E3

9 0.10934E9 0.11533E7 0.58653E4

10 0.68242E9 0.10868E8 0.86040E5 0.13000E2

11 0.41418E10 0.92120E8 0.10196E7 0.18705E4

12 0.24565E11 0.72180E9 0.10539E8 0.46719ES 0.10182E2

13 0.14290E12 0.53231E10 0.98443E8 0.75359E6 0.18652E4

14 0.81766E12 0.37414E11 0.85047E9 0.94785E7 0.51259ES 0.42667E2
15 0.46128E13 0.25289E12 0.68989E10 0.10223E9 0.83913E6 0.16213E4
vectors are chosen for convenience, as [15]:

a, = L £+ a L F+3 a L £+ %) 3)

where the 1/+/2 is a normalisation factor so that each bond is of length unity. The
enumeration is performed with the first monomeric site rooted at the origin and the first
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step fixed along 4,. It is then easy to see that there are only four sets of topologically
distinct configurations [15]:

(i) the second step is along 4, ;

(ii) the second step is along +d, A £;

(iii) the second step is either along &, 4,, —d; Ay or —d, A £; and
(iv) the second step is either along d; A §, d, A £, —d, or along —d,,

where the A denotes a vector cross product. Care should be exercised to make sure that
contributions (both positively and negatively) from different projected components are
accounted for. Tables 3 and 4 present the first three odd moments of the persistence
lengths for trails and silhouettes, respectively. The tabulations here are up to a chain
length of / = 10 and a maximum number of intersections of I = 5. Hence we see that
the enumerations on the simple cubic lattice and the face-centred cubic lattice are up

to the same term in the expansion of equation (2) as a series in e/?.

Table 3. Trails on a face-centred cubic lattice: (a) the first odd moment of the persistence
length X (/,1); (b) the second odd moment of the persistence length X3(/,1); (c) the third
odd moment of the persistence length X3(I, I).

i I1=0 I=1 1=2 I=3 I=4 I=5
@  xuD

2 0.12000E2

3 0.13300E3 0.00000E0

4 0.14260E4 0.34000E2

5 0.15023E5 0.94200E3 0.24000E2

6 0.15662E6 0.17072E5 0.88400E3

7 0.16218E7 0.25806E6 0.21862E5 0.21200E3

8 0.16714E8 0.35335E7 0.42659E6 0.15712E5 0.11200E3

9 0.17165E9 0.45501E8 0.71505E7 0.49856E6 0.11224E5

10 0.17580E10 0.56207E9 0.10848E9 0.11296E8 0.50473E6 0.37520E4
b XD

2 0.24000E2

3 0.42100E3 0.00000E0

4 0.63445E4 0.35500E2

5 0.87546E5 0.17700E4 0.15000E2

6 0.11406E7 0.48968E5 0.14600E4

7 0.14275E8 0.10287E7 0.53257E5 0.14900E3

8 0.17344E9 0.18413E8 0.13762E7 0.22090E5 0.64000E2

9 0.20597E10 0.29684E9 0.29324E8 0.10815E7 0.14188ES

10 0.24024E11 0.44468E10 0.55059E9 0.33395E8 0.95555E6 0.42440E4
© XD

2 0.64500E2

3 0.18730E4 0.00000E0

4 0.40229E5 0.35875E2

5 0.73122E6 0.45120E4 0.12750E2

6 0.11942E8 0.20420E6 0.34940E4

7 0.18102E9 0.60830E7 0.20040E6 0.13325E3

8 0.25970E10 0.14316E9 0.70777E7 0.48494E5 0.52000E2

9 0.35719E11 0.28928E10 0.19341E9 0.36662E7 0.27589E5

10 0.47511E12 0.52530E11 0.44842E10 0.15647E9 0.29305E7 0.70070E4
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Table 4. Silhouettes on a face-centred cubic lattice: (a) the first odd moment of the
persistence length X (I, I); (b) the second odd moment of the persistence length X3(1,1); (c)
the third odd moment of the persistence length X5(I, I).

! 1=0 I=1 I=2 I=3 I=4 I=35
(a) X0

2 0.12000E2

3 0.13300E3 0.00000E0

4 0.14260E4 0.17000E2

5 0.15023E5 0.47100E3 0.40000E1

6 0.15662E6 0.85360E4 0.14733E3

7 0.16218E7 0.12903E6 0.37613E4 0.13250E2

8 0.16714E8 0.17667E7 0.76343E5 0.97692E3 0.25455E1

9 0.17165E9 0.22751E8 0.13251E7 0.31148ES5 0.23602E3

10 0.17580E10 0.28103E9 0.20692E8 0.72341E6 0.10382ES 0.24764E2
(b) x40

2 0.24000E2

3 0.42100E3 0.00000E0

4 0.63445E4 0.17750E2

5 0.87546ES 0.88500E3 0.25000E1

6 0.11406E7 0.24484ES5 0.24333E3

7 0.14275E8 0.51437E6 0.90098E4 0.93125E1

8 0.17341E9 0.92064E7 0.23903E6 0.13766E4 0.14545E1

9 0.20597E10 0.14842E9 0.52466E7 0.67306ES 0.31075E3

10 0.24024E11 0.22234E10 0.10136E9 0.21142E7 0.20073E5 0.29881E2
(@ X340

2 0.64500E2

3 0.18730E4 0.00000E0

4 0.40229E5 0.17937E2

5 0.73122E6 0.22560E4 0.21250E1

6 0.11942E8 0.10210E6 0.58233E3

7 0.18102E9 0.30415E7 0.33537E5 0.83281E1

8 0.25970E10 0.71581E8 0.12035E7 0.30272E4 0.11818E1

9 0.35719E11 0.14464E10 0.33661E8 0.22812E6 0.61715E3

10 0.47511E12 0.26265E11 0.80090E9 0.98475E7 0.62791ES 0.51161E2

3.3. Some inferences

From tables 1-4 and the ¢(l,I) tables of [13-15], it is easy to see that for both the
simple cubic lattice and the face-centred cubic lattice, the reduced moment

— 2k+1
MI

W) “

©) = <X12r+1(6))(2k+1)/(2r+1) =

where the equality sign holds only for [ = 1. This behaviour has also been observed in
2D [1, 4, 15]. The inequality is a direct consequence of the faster rate of increase of the

higher moments. It can also be easily verified that M ,2"“(0) increases as 6 increases
[15]. Such behaviour has also been noted in 2D [1, 17).

4. Analysis of the data

As in [1], we shall try to fit the averaged odd moments of the persistence lengths with
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a scaling law of the form

AyO)f () ifk=0

A (B)PO £ () ifk=1,2,... )

(XP1(0) = {

where the arguments 8 show explicitly any possible temperature dependence, p is a
parameter, f (/) is some function of | and the A, () are the amplitudes (or prefactors).
As can easily be shown (at least heuristically) [4, 5], (/) ~ constant in 3D. In order
to investigate this numerically, we shall analyse the persistence lengths of trails and
silhouettes by taking the Naperian logarithms of equation (5):

log,o(X¥+1(6)) = pkv(6) logo | + log,q f (1) +logq 4,(6). (6)

In addition, we will also study the differences in averaged moments of persistence
lengths of silhouettes and trails [1]

AFTHO) = (X O)) g — (X7 (O)) "

To summarise, we shall analyse on each lattice (as in [1]) the persistence lengths in
three steps:

(1) the variation of persistence lengths with chain length;
(2) the temperature dependence of the persistence lengths, and
(3) the variation of A%*!(8) with temperature.

5. Analysis for trails and silhouettes on a simple cubic lattice

5.1. Variation with chain length

Figures 1(a)-1(d) are plots of log,,(X*!) against log,, / at two different temperatures
of 4 =0.0 and 8 = 4.0. It is very obvious that in the hot region (for example 8 = 0.0),
the plots are linear so that we can perform a linear regression on the data in this
region.

Table S5(a) tabulates the gradients (see equation (6)) of the log-log plots for
—5 < 6 < 5 and table 5(b) gives the intercepts of the plots in the same temperature
range. The regression coefficients are averages of the coefficients obtained from
loin <1< 1, where I = 7,...,11 and [, is held fixed at 15. It is interesting to
note that for the k = O case, the gradient pkv ~ 1072 and the intercept is a constant
(~ 0.1), an observation that can be corroborated with the fact that f(I) ~ constant.

5.2. Variation with temperature

Figures 2(a) and 2(b) are representative plots of the variation of the averaged persis-
tence lengths with temperature, (X’) against  for 10 < ! < 15. It is seen from the
plots that the averaged persistence lengths remain at a constant value for low values of
0 (swollen region), and then decrease very rapidly within a relatively narrow range of
6 to another constant value. As in 2D [1], it is also observed that this collapse occurs
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Figure 1. Log-log plots of (X}, (X3}, (X%) and (X7)
against / at a constant § = 0.0 in (a) trails and (b)
silhouettes on a simple cubic lattice; at a constant
8 = 4.0 in (c) trails and (d) silhouettes on a simple
cubic lattice.

x'o5_"'r T T —71 T T

{a) [ 4

ﬁ
g

0.6

oy

)

o T 1 | L A T
BT 0 2 4
8

Figure 2. Plots of (X7} against 8 for { = 10-15 in (a)
trails and (b) silhouettes on a simple cubic lattice;
(c) a plot of A;’ for | = 10~15.

at a higher value of 8 for silhouettes than that for trails. We note in particular that at

8 = —o0 (SAW)

1.293 ifk=1
pkv = < 2.555 ifk=2
3.815 ifk=3

®
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Table 5. The values of (a) the linear regression coefficients of the Naperian logarithm and
(b) the prefactors for the first four odd moments of the persistence lengths for trails and
silhouettes on a simple cubic lattice.

Trails Silhouettes

4 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

(a) pkv
-0 0034 1293 2555 3815 0034 1293 2555 3815
—50 0034 1293 2555 3815 0035 1294 255 3816
—40 0034 1292 2554 3812 0034 1293 2555 3815
-30 0033 1289 2548 3805 0035 1291 2552 3811
-20 0032 1280 2532 3785 0033  1.287 2545  3.801
—10 0026 1253 2489 3729 0030 1274 2524 3774
00 0010 1175 2364 3569 0024 1240 2466  3.700
10 —0035 0941 1993 3101 0003  1.143 2309  3.497
20 —0.093 0414 1095 1931 -0044 0891 1.899  2.969
30 —0012 0093 0168 0410 -0076 0443 1093 1877
40 0140 0432 0321 0008 0032 0236 038 0654
50 0231 0939 1154 0807 0203 0553 0546 0347

(b) logyo Ak
—00 0.096 0.024 0.111 0.308 0.096 0.024 0.111 0.308
-5.0 0.096 0.024 0.111 0.308 0.096 0.024 0.110 0.307
-4.0 0.097 0.025 0.112 0.310 0.097 0.024 0.111 0.308
-30 0.097 0.026 0.115 0.314 0.095 0.025 0.112 0.311
-2.0 0.095 0.030 0.124 0.327 0,096 0.027 0.117 0.317
-1.0 0.095 0.042 0.150 0.364 0.095 0.032 0.129 0.335
0.0 0.092 0.082 0.228 0473 0.093 0.048 0.163 0.383
1.0 0.093 0.220 0.478 0.808 0.091 0.096 0.259 0.519
20 0.064 0.539 1.104 1.673 0.085 0.231 0.522 0.883
30 —-0.126 0.542 1.577 2.656 0.022 0.452 1.027 1.634
40 —0.362 -—0.094 0.926 2408 —0.192 0.353 1.283 2.316
50 -—0498 -—-0.807 —0.300 1.037 -0442 -0.243 0.659 2.006

which, after substituting v(SAW) = 3/3, yield

2155  ifk=1
p= {2.129 ifk=2 ©)
2119 ifk=3.

These results are in very good agreement with p = 2.0 obtained from scaling analysis

[5].

5.3. Variation of A¥**' with temperature

Figure 2(c) displays A,”‘*1 against 6 for 10 </ < 15. As 6 increases from —oo to +o0,
A#+! increases from zero, attains a maximum and then decreases back to zero. The two
tails are explained by the fact that in the swollen phase (hot region) and in the collapse
phase (cold region), trails and silhouettes share a common exponent of v = 3/5 and
v = 1/d respectively (where we recall d is the dimensionality). The non-vanishing value
of A+! is a direct consequence of the fact that collapse occurs at a higher value of 8
in silhouettes than in trails.
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6. Analysis for trails and silhouettes on a face-centred cubic lattice

6.1. Variation with chain length

Figures 3(a) and 3(b) are plots of log,o(X?*!) against log,, ! for trails and silhouettes,
respectively. The regression coefficients, obtained from [, <! < [, where I, =
4,....,8 and | ,, = 10, are tabulated in tables 6(a) and 6(b). Again we note here that
for the k = 0 case, the gradient pkv ~ 1072 and the intercept is a constant (~ 0.04).
This should be contrasted with the results in 2D where pkv = 107} for the k = 0 case.

For larger values of 8 (figures 3(c) and 3(d)), the log-log plots are more erratic.

6.2. Variation with temperature

The variation of (X’) with 6 is depicted in figures 4(a) and 4(b). The qualitative

behaviour is very similar to that observed on the simple cubic lattice, and the same

explanation is still valid for explaining the qualitative features. From table 6(a), at
= —0 (SAW)

1275 ifk=1
pkv = {2.519 if k=2 (10)
3785  ifk=3

which, after making the substitution v(SAW) = 3/5, give

2125 ifk=1
p={2.099 if k=2 (11)
2103 ifk=3.

These results are again in excellent agreement with the scaling analysis results of p = 2.0

[5].

6.3. Variation of A**! with temperature

The variation of A**! with 6 is shown in figure 4(c) for 5 < I < 10. The qualitative
behaviour is very similar to that seen on the simple cubic lattice and may be explained
similarly.

7. Discussions and conclusion

We have systematically studied the first four odd moments of the persistence lengths of
trails and silhouettes on a simple cubic lattice and on a face-centred cubic lattice. The
results are tabulated according to their chain lengths and the number of intersections
for the first time. This tabulation allows the temperature dependence to be introduced
via the conjugate fugacity factor e'?, and this renders examinable the properties of
persistence lengths in various temperature regions. The results seem to augment the
belief that persistence lengths (in 3D) scale according to the scaling law [4, 5, 15]

<X[2k+l(0)> ~ lpkv(@) (12)
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where p = 2.0. We have also tried to fit the enumeration data with the reduced moment

iy

<X12k+l (9)) B Ak (B)kav(e)

2k+1 _
MO = %@y -

Ao (0)

(13)

so that any possible f(l) dependence may be eliminated. The linear regression coef-
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Table 6. The values of (a) the linear regression coeflicients of the Naperian logarithm and
{b) the prefactors for the first four odd moments of the persistence lengths for trails and
silhouettes on a face-centred cubic lattice.

Trails Silhouettes

0 k=0 k=1 k=2 k=3 k

I
o

k=1 k=2 k=3

(a) pkv

—C 0.045 1.275 2.519 3.785 0.045 1.275 2.519 3.785
=50 0.043 1.274 2.517 3.783 0.043 1.274 2.518 3.784
—4.0 0.043 1,272 2.514 3.779 0.044 1.273 2517 3.782
=30 0.042 1.266 2.506 3.769 0.043 1.271 2.513 3777
-20 0.039 1.252 2.484 3.741 0.040 1.263 2.502 3.763
-1.0 0.03t 1.211 2421 3.663 0.037 1.244 2471 3.726
0.0 0.008 1.097 2245 3.445 0.027 1.192 2.390 3.624
1.0 —0.048 0.793 1.767 2846  —0.000 1.057 2.179 3.358
20 0,097 0.253 0.810 1.569 —0.048 0.762 1.692 2.730
30 -0040 —0.050 —0.039 0.145 —-0.059 0.356 0912 1.628
4.0 0.049 0.117 -0.097 —0.380 0.029 0.175 0.302 0.53%
5.0 0.061 0.435 0.362 —0.063 0.132 0.355 0.290 0.135

(b) logyp Ak
— 0.042 —0.052 —0.000 0.132 0.042 —0.052 —0.000 0.132
-50 0.044 —0.052 0.000 0.133 0.044 —0.052 —0.000 0.133
—4.0 0.043 —0.051 0.001 0.135 0.042 —0.052 0.000 0.134
-30 0.043 —0.049 0.005 0.141 0.043 —0.051 0.002 0.136
-20 0.042 —0.043 0.016 0.156 0.044 —0.048 0.008 0.144
—1.0 0.040 —0.027 0.048 0.198 0.042 —0.040 0.022 0.164
0.0 0.037 0.024 0.140 0.320 0.038 —0.020 0.062 0.218
1.0 0.034 0.169 0.401 0.668 0.033 0.035 0.168 0.363
20 —0.010 0.403 0.910 1.406 0015 0.154 0.410 0.706
30 —0.150 0.363 1.177 2057  —0.064 0.267 0.752 1.269
40 —0287 —0.046 0.767 1877 —0.224 0.141 0.835 1.648
50 —0326 —0.514 0.000 1063 0367 —0.261 0415 1.401

ficients obtained from this fit differ from the numbers in tables 5(a) and 6(a) only in
the second decimal place. This may be taken as a sign that equation (12) provides a
reasonable fit.

Quick comparisons of figures 1 and 3, especially those in the cold temperature
regions, show that the averaged odd moments (X?**1(6)) are correlated. This is
obvious from the defining equation (2).

Since the face-centred cubic lattice has a coordination number g = 12 and the
simple cubic lattice has a coordination number g = 6, the persistence lengths in the
former are expected to be lower than in the latter. This fact is clearly borne out in
tables 5(b) and 6(b). It is seen that the weaker persistency on the face-centred cubic
lattice is absorbed into the prefactors (see equation (5)), thus explaining the lower
values of the prefactors on the face-centred cubic lattice as compared with those on
the simple cubic lattice.

On each lattice, it is seen that as 8 is increased, collapse occurs at a lower value
of 6 in trails (see figures 2(a) and 2(b), 4(a) and 4(b)). This behaviour is also very
well reflected in figures 1 and 3. Closer comparison of the figures reveals that as 8 is
increased, the persistence lengths of silhouettes decrease, but always stay larger than or
equal to those of trails. Since 6 is the inverse temperature, this implies that silhouettes
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collapse at a colder temperature. A plausible explanation for this behaviour is that
for each silhouette, there is a multiplicity of trails and thus it is energetically more
favourable for silhouettes to collapse at a colder temperature. This fact has also been
observed in 2D [1].

Another noteworthy observation is that persistency is relatively weaker in 3D than
in 2D [5]. This is not surprising at all since in 3D the walks have an extra physical
dimension. In general, one would expect the persistency to be lower the higher the
dimension, an inference in agreement with the data of [5], though not explicitly pointed
out in the reference.

To summarise, we note that most of the properties of the persistence lengths
observed in 2D [1] are also observed in 3D, except that f(!) ~ log,/ in 2D and
f () ~ constant in 3D. The log, ! dependence is unique of 2D. This conclusion is very
reminiscent of the results of SAW [4, 5], which correspond to our § — —oo limit. Since
SAW are actually trails (or silhouettes) with no intersections, their persistency provides
a numerical upper bound on the persistency of trails (or silhouettes).
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